A conserved stable core structure in the passenger domain beta-helix of autotransporter virulence proteins.
نویسندگان
چکیده
In Gram-negative bacteria, a wide variety of virulence factors are secreted via the autotransporter (AT) pathway. Intriguingly, there is no significant concentration of ATP in the periplasm, nor a proton gradient across the OM, so the energetic origin of efficient secretion of AT proteins is unknown. More than 97% of AT proteins are predicted to contain right-handed parallel beta-helical structure, and the three crystal structures available for AT passenger domains each contain a long right-handed parallel beta-helix. Previous studies have shown that pertactin, an AT from Bordetella pertussis, exhibits three-state folding and has a C-terminal stable core structure. Here, we show that Pet, an unrelated AT from Escherichia coli, also exhibits three-state unfolding and also has a stable core structure. Deletion mutants, mass spectrometry, and N-terminal sequencing demonstrate that the Pet stable core is also located near the C-terminus of the passenger domain. Moreover, sequence analysis suggests that three-state folding and a C-terminal stable core structure could be important general features of the biogenesis of AT proteins in vivo.
منابع مشابه
Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins.
Many virulence factors secreted from pathogenic Gram-negative bacteria are autotransporter proteins. The final step of autotransporter secretion is C --> N-terminal threading of the passenger domain through the outer membrane (OM), mediated by a cotranslated C-terminal porin domain. The native structure is formed only after this final secretion step, which requires neither ATP nor a proton grad...
متن کاملVectorial transport and folding of an autotransporter virulence protein during outer membrane secretion.
Autotransporter (AT) proteins are a large and diverse family of extracellular virulence proteins from Gram-negative bacteria, characterized by a central beta-helix domain within the mature virulence protein. It is not clear how these proteins cross the outer membrane (OM) quickly and efficiently, without assistance from an external energy source such as ATP or a proton gradient. Conflicting res...
متن کاملA conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation.
Autotransporters are bacterial virulence factors that share a common mechanism by which they are transported to the cell surface. They consist of an N-terminal passenger domain and a C-terminal β-barrel, which has been implicated in translocation of the passenger across the outer membrane (OM). The mechanism of passenger translocation and folding is still unclear but involves a conserved region...
متن کاملRole of the alpha-helical linker of the C-terminal translocator in the biogenesis of the serine protease subfamily of autotransporters.
Autotransporters are secreted virulence factors that comprise three domains: an N-terminal signal peptide, an internal passenger domain, and a C-terminal beta-domain. The mechanism of passenger translocation across the outer membrane remains undefined, with four models having been proposed: the "hairpin," the "threading," the "multimeric," and the "Omp85 (YaeT)" models. In an attempt to underst...
متن کاملStructure of the translocator domain of a bacterial autotransporter.
Autotransporters are virulence-related proteins of Gram-negative bacteria that are secreted via an outer-membrane-based C-terminal extension, the translocator domain. This domain supposedly is sufficient for the transport of the N-terminal passenger domain across the outer membrane. We present here the crystal structure of the in vitro-folded translocator domain of the autotransporter NalP from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biopolymers
دوره 89 5 شماره
صفحات -
تاریخ انتشار 2008